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We present a theoretical and experimental study of the flow of non- 
Newtonian fluids over the surface of a rotating flat disk, with con- 
sideration of lag. 

Equipment  with moving cent r i fugal  a t t achment s  is 
used extens iveIy  for n u m e r o u s  indus t r i a l  appl icat ions  
[1-4] .  Such equipment  employs  r o t o r s  made up of a 
shaft c a r r y i n g  a t t achments  such as a f lat  disk,  a cone, 
a sphere ,  etc.  

The l iquids  p roces sed  in such equipment  n o r m a l l y  
fo rm f i h n  flows over  the open su r faces  of the a t tach-  
men t s .  

Centr i fugal  m a c h i n e r y  is  used to p roces s  the mos t  
d i v e r s e  m a t e r i a l s  which, in t e r m s  of t he i r  theo log ica l  
p rope r t i e s ,  can be c lass i f i ed  as Newtonian f luids,  v i s -  
coplas t ics ,  and non-Newtonian  f luids .  

The eff ic iency achieved with the ro ta t ing  equipment  
depends in g rea t  m e a s u r e  on the quant i ta t ive  r e l a t i on -  
ships governing  the mot ion  of the f luids ove r  the s u r -  
faces  of the ro ta t ing  par t s .  

When the f luid is f lowing over  such a ro ta t ing  part ,  
we mus t  take into cons ide ra t ion  i ts  poss ib le  lag r e -  
la t ive  to the sur face ,  and this  may  amount  to 30-50% 
of the c i r c u m f e r e n t i a l  ve loci ty  [5]. Such lag reduces  
the d i s cha rge  ve loc i ty  of the l iquid f rom the equipment  
and th ickens  the f i lm.  

Until  now, no one has deal t  with the flow of a non-  
Newtonian fluid over  a ro ta t ing  par t  f rom the s tand-  
point of poss ib le  lag. Such cons ide ra t ions  have been 
appIied only to v i scous  l iquids  [6]. Flows of v i s co -  
p las t i cs  and non-Newtonian  f luids ove r  a ro ta t ing  par t  
have been studied, but  only without cons ide ra t ion  of 
the lag [7, 8]. 

We wil l  p r e s e n t  the r e su l t s  f rom a theo re t i ca l  and 
expe r imen ta l  study of the f i lm flow of a non-Newtonian  
fluid over  an open- type  ro ta t ing  flat  disk, with con-  
s ide ra t ion  of lag.  

F o r m u l a t i o n  and solut ion of the p rob l em.  We a s -  
sume that the theo log ica l  equation of s ta te  for  the 
fluid is d e s c r i b e d b y a n  exponent ia l  equation of the type 

The fluid is fed to the c e n t e r  of a ro ta t ion  f lat  disk 
and flows in the fo rm of a thin cont inuous  l a m i n a r  
f i lm.  We will  examine  the motion of the fluid in a cy-  
l i nd r i ca l  coordina te  sy s t em r, q), z, ro ta t ing  together  
with the disk.  1)Let the effect of the force  of gravi ty ,  
of the forces  of su r face  tens ion ,  and of the f r i c t iona l  
forces  r e l a t ive  to the ambien t  med ium be ins ign i f i can t ;  
2) let  the th ickness  of the fluid f i lm be incomparab ly  
s m a l l e r  than the rad ius  of the disk co r r e spond ing  to 

that t h i ckness ;  3) let the r e l a t ive  veloci ty  of f lu id-  
f i lm motion be subs tan t i a l ly  s m a l l e r  than the c o r r e -  
sponding c i r c u m f e r e n t i a l  veloci ty  of the disk,  and let 
the o r d e r  of the magni tude  of the rad ia l  veloci ty  and 
of the lag veloci ty  be iden t ica l ;  4) let  the flow of the 
fluid over  the disk be s teady.  

The fluid mot ion  in this  case  is  fully de sc r i bed  by 
the equat ions  der ived  in [9]. The complete  solut ions  
of these  equat ions  is  p r e sen t ly  imposs ib l e .  The above-  
ci ted condi t ions  enable  us to s impIi fy  these  equat ions.  

The r e su l t i ng  approx imate  equat ions have the form 
n-- I  

o ,c,  ooo ,5+ ( oo, ?l T or, I K 

_ _  Op __p p~r . - -2pco% = 0, (2) 
Or 

n--]  

\ O z / J  

--}- 2 pc v r = O, (3) 

ap = O. (4) 
Oz 

It follows f rom Eq. (4) that the p r e s s u r e  does not change 
through the th ickness  of the f i lm,  and that it is con-  
s tant  and equal to the a tmosphe r i c  p r e s s u r e  at the s u r -  
face of the f i lm.  Hence, Op/~r = 0. 

Cons ide rab le  ma thema t i ca l  d i f f icul t ies  a r e  encoun-  
t e r e d  in the d i rec t  in tegra t ion  of the flow equations (2) 
and (3). We will  t he re fo re  use  the approx imate  method 
of solut ion,  based on the use  of co r r e spond ing  in t eg ra l  
r e l a t ionsh ips  in place of Eqs. (2) and (3) [see re f -  
e rence  10 ]. F o r  this  we f i r s t  have to specify the fo rm 
of the veloci ty  profi le  ove r  the th ickness  of the f i lm 
layer .  The a c c u r a c y  of the solut ion wil l  depend on the 
extent to which the veloci ty  prof i le  has been  p roper ly  
chosen,  i . e . ,  the extent to which the prof i le  will  a c -  
cu ra te ly  ref lec t  the t rue  d i s t r i bu t ion  of ve loc i t ies  
through the th ickness  of the l aye r .  We wil l  a s s u m e  the 
veloci ty  prof i le  to be the same  as in the case of the 
flow of a non-Newtonian  fluid ove r  a f i t t ing in the event 
of no lag  [11]: 

l-t-n 

Ur m a x  

For  the lag veloci ty  we a s s u m e  that 
l-t-n 

r m a x  

(6) 
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To obtain the in tegra l  re la t ionships ,  let us inte-  
g ra te  Eqs.  (2) and (3) o v e r  z f r o m  0 to 5 0. Then 

6, n--I 

0 - Ov~ ~ ' d z  + 

o \ Oz ] J Oz ! 

6o 60 

-F p(o" r ; dz - -  2 pco ff % dz ---- O, (7) 

0 0 

60 n--I 

o It( o o/%l oo, ooo  dz+ 
K ~ t k ~  Oz / t Oz I J  O z l  

0 
6, 

3 + 2p~ v r & = O. (8) 
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Having subst i tuted (5) and (6) into the in tegra l  r e -  
la t ionships (7) and (8), we obtain 

n--I 

. - -  KVrmax  ( V2~max -~- ~rmax ~ ~ @1 " n 1 n ) ( - - : - )  
+ po~ ~ r 50 -- 2 pco % m~x ~5o n + 1 0i (9) 

2 n +  1 

n--I 

+ 2p(OV, m.,:8o n +_.___~1 == O. (10) 
2n --b 1 

Equations (9) and (i0) contain three unknowns: v r max, 
v(p max, and 5 0. To close the system, we will employ 
the continuity equation. 

Solution of the system of equations for v~ max yields 

2n4- 1 
O~max'=- n - t -  1 

( o r  2 , q 

X [ - - ' ~ - - V  (\ 4 ) - - (  2-~-~--r~o ) ]"  (11) 

Proceeding from Eqs. (9) and (I0), we can obtain 
the relationship for the film thickness: 

( 
- - K k  n / k 60 

k 2- -797 8. 
It--[ 

/ q ',2~ ~ p~  q 

\ ~XrOo 1 /  ~ r  

The resu l t ing  equation (12) is not solved fo r  5 0 . Let  
us in t roduce the new var iab les  q and ~: 

, = 2  

[~ 2q 4 Vrav (13) 
oJ~ r ~ 8 o r r 

5.@ p ( n ~ [  q ~n+l 1 
K ~ ]  l - - ~ - j  r3n+lto2n_ 1 �9 (14)  

With (13) and (14), we s implify the f o r m  of Eq, (12): 

O.e / ~  

! 
0 0.2 

Fig.  1. 
plex ~b: 
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Dimens ion less  rad ia l  ve loci ty  fi ve r sus  corn-  
1) n = 0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.6; 6) 0.8; 

7) 1.0; 8) 1.5; 9) 2.0. 

n+__2 
~n( l__~  l_~z) = = %  (15) 

This equation can be solved numer ica l ly .  Fo r  this 
we have to es tabl ish  the l imi ts  of/3 and r As we can 
see f r o m  Eq. (15), the i r  max imum values cannot be 
l a r g e r  than unity.  Calculat ions show that the smal les t  
value of B which can be encountered in p rac t i ce  is on 
the o r d e r  of 10 -6 . 

Fo r  values of ~ ~ 10 -2, fo rmula  (15) can be p r e -  
s e n t e d - w i t h  sufficient a ccu racy - - i n  the fo l lowingform:  

nq-I 

0.5-V ~2n+I = 4- (16) 

Figure 1 shows the curves of the functions ~(fl), 
constructed from the numerical solution of Eq. (15)- 
the solid lines--and of Eq. (16)--the dashed lines. 

As we can see from the figure, for small values of 
/3 the curves plotted on the basis of formulas (15) and 
(16) coincide. When 8 is increased, these curves be- 
gin to differ, and when f~ = 1 the value of ~ calculated 
from (15) is equal to i, while that value calculated ac- 
cording to (16) is 0.5n+1/2. 

These curves enable us to determine the average 
value for the radial velocity and the thickness of the 
film. For this we have to know the fluid constants K, 
n, and p. The operating conditions should give us q, 
w, and r. We then calculate the value of ~. Having 
determined the value of fl from the curve, we can find 

Vr av or 5 o. 
We have to de te rmine  the cases  in which we must  

use  the data of this  solution to find Vra  v o r  5 0, and in 
which cases  we should use  the data f r o m  the solution 
without cons idera t ion  of the lag, as  obtained in [11]. 
If we rep lace  the d imens ion less  complexes  in Eq. (16) 
by the i r  express ions  and if we find the fo rmula  for  
Vr av, it would not be difficult to prove that this f o r -  
mula can be used to de te rmine  the radial  veloci ty  de -  
r ived without cons idera t ion  of the lag veloci ty .  Thus if 
B ~ 10 -2, we can use  the solution of [11], while if ]3 > 
> 10 -2, we can use the data of this solution.  

The value for  the lag veloci ty  can be found if we 
proceed  f rom re la t ionship  (11). However,  it is not 
comple te ly  convenient  fo r  use .  If we int roduce the 
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Fig. 2. Dimensionless lag velocity ~ versus complex 
~: 1) n = 0.1; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.6; 6) 0.8; 

7) 1.0; 8) 1.5; 9) 2.0. 

new va r i ab le  ~ = v~v m a x / a ) r / 4  into this  re la t ionsh ip ,  
then it a s s u m e s  the fo rm 

2 n + l  
a = (1 - -V '  1 - -  ~). (17) 

n§ 

The simultaneous solution of Eqs. (15) and (17) enables 
us to associate ~ with the dimensionless complex ~: 

2n-Jr--I n 2 n + l  

2 - 2 T i - J  2 -  ~ \2-~-L-F+I/ ~ = *  (is) 

Figu re  2 shows the cu rves  of the funct ion a (~), de-  
r ived f rom the n u m e r i c a l  solut ion of this  equation for 
va r ious  n.  

As we can see f r o m  the f igure ,  with an i n c r e a s e  in  
and n the va lue  of (~ i n c r e a s e s .  We know that an in -  

c r ea se  in n leads  to an i n c r e a s e  in the value of the ef-  
fect ive v i scos i ty .  Hence we can draw the conclus ion  
that an i n c r e a s e  in the v i scos i ty  leads  to an i n c r e a s e  
in the lag veloci ty .  This c l e a r l y  con t rad ic t s  the phys i -  
cal p ic tu re .  However,  such a con t rad ic t ion  would be 
p r e sen t  only if the value of ~ w e r e  kept constant �9 In 
actual  fact,  however,  the i n c r e a s e  in n leads to a r e -  
duction in ~--a  reduct ion  which, in the f inal  ana lys i s ,  
leads  to a reduc t ion  in o~. 

To find the lag velocity v(0 max we have to calcu- 
late the value of ~ and determine ~ from the corre- 

sponding curve. If we have to know the average lag 

velocity through the thickness of the film, we should 

use the following relationship: 

._ n + l  
%av 2n -~- 1 V~~ (19) 

It would be interesting to compare our solution for 
n = 1.0 with the existing Vachagin [6] solution. Calcu- 

lations show that the deviation in the derived results 

for vq~ av and Vra V does not exceed 8-10%. 

An expe r imen ta l  study of flow. To check the r e l i -  
abi l i ty  of the der ived  re la t ionsh ips ,  we should u n d e r -  
take an expe r imen ta l  study of the flow. With this  p u r -  
pose in mind,  we devised  the expe r imen ta l  ins ta l l a t ion  
whose d i a g r a m  and desc r ip t ion  have been  given by the 
p re sen t  au thors  in [11]. While the tes t  in [11] involved 
the m e a s u r e m e n t  of the f lu id - f i lm th ickness ,  he re  it i s  
accompl i shed  by m e a s u r i n g  the ave rage  va lues  of the 
rad ia l  veloci ty  and of the lag veloci ty  by means  of an 
SKS-1M m o t i o n - p i c t u r e  c a m e r a .  

We u s e d  a 2.5% aqueous solut ion of ca rboxymethy l -  
ce l lu lose  as the tes t  fluid. We studied the theo logica l  
p rope r t i e s  of the so lu t ion  by means  of a s i n g l e - s c a l e  
cap i l l a ry  v i s c o s i m e t e r .  It developed that the flow of the 
2.5% aqueous solut ion of the ca rboxymethy lce l lu lose  in 
the range  Ig;/ = 2 .8 -5 .5  can be desc r ibed  by an expo- 
nent ia l  law with the theo log ica l  cons tants  n = 0.67 and 
K = 0.31 n s e e n / m  z. 

The t e s t s  were  c a r r i e d  out on a flat  d isk  150 mm in 
d i a me t e r .  The expe r imen ta l  r e su l t s  a r e  shown in 
Fig.  3. As we can see  f rom the f igures ,  the expe r i -  
menta l  points  l ie  a long the theore t i ca l  curves ,  with 
the deviat ion not exceeding 15%. This p e r m i t s  us to 
s ta te  that ,  on the one hand, the a s sumpt i ons  adopted in 
the theore t i ca l  por t ion  of th is  paper  a r e  val id,  while 
on the o ther  hand, the chosen method of s tudying the 
flow of a fluid over  a ro ta t ing  par t  i s  r e l i ab l e .  

NO TA TION 

7 is the shear stress; ~ is the shear velocity; K and 

n are the rheological constants of fluid; 50 is the thick- 
ness of fluid film, v r is the radial velocity of fluid flow ; 
v~ is the velocity of fluid lag relatively to tube sur- 

I20 

Y~ 
~ a 

4,0 / 3 5 7 6 

25 

1 o--[ 
o b a _ _  E 

e = 4 I/ 

46 

3 5 /" 

Fig. 3. Change of radial velocity (a) and mean lag velocity (b) 
(cm/sec) along tube radius (cm): i) q = 3.0 �9 10 -5 m3/sec; w = 
= 210 sec-t; 2) 2.0.10 -5 and 293; 3) 1.5.10 -5 and 262; 4) 3.0" 

�9 10 -5 and 293; 5) 3.0.10 -~and 335; 6) 62.0" 10 -5 and 210. 

703 



face; v r and v(p av are  the value of radial velocity and 
lag velocity mean with respect  to film thickness, r e -  
spectively; v(p max and Vrmax are  the maximum vel-  
ocities at z = 5 o; q is the fluid rate;  f~ is the dimension- 
less radial velocity; r is the dimensionless complex; 
(~ is the dimensionless lag velocity. 
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